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Abstract—Fractional interpolation is a significant technology
in motion compensation of video coding. It generates sub-
pixel level reference samples in inter prediction to facilitate
temporal redundancy removal between video frames. Recently,
some methods explore to introduce the deep learning technique
for fractional interpolation and have obtained better compression
results. However, existing deep learning based methods still treat
fractional interpolation as a traditional interpolation problem
but fail to adjust it to the motion compensation scenario. In
this paper, we design a switch mode based deep fractional
interpolation method to introduce integer pixels of different
positions to the interpolation of sub-pixel position samples.
By switching between integer pixels of different positions, our
method can infer the sub-pixels with smaller variations and
achieve better fractional interpolation results. Consequently the
motion compensation performance can be further improved.
Experimental results have also verified the efficiency of the
switch mode based deep fractional interpolation. Compared with
High Efficiency Video Coding, our method achieves 2.8% bit
saving on average and up to 6.2% bit saving under low-delay P
configuration.

I. INTRODUCTION

Motion compensation is an important technology in video

coding which utilizes the temporal redundancy among video

frames to boost the coding performance. Specifically, during

inter-prediction, reference blocks are searched from previously

coded frames for a current block which is to be coded. Then,

only motion vectors and residues between the reference blocks

and the current block need to be coded, which can lead to

much bit saving in video coding.

However, due to the discrete spatial sampling of digital

videos, signals of adjacent pixels in a video frame are not con-

tinuous. Consequently, reference blocks at the integer position

may have sub-pixel level motion shifts to the current block.

To produce better reference blocks, video coding standards

like High Efficiency Video Coding (HEVC) generate sub-

pixel level reference blocks from the integer-position reference

block with the fractional interpolation technique. The video

coding standards commonly adopt fixed interpolation filters

for fractional interpolation [1], [2]. This kind of interpolation
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methods are effective for motion compensation. However, the

fixed interpolation filters may fail to fit for natural and artificial

video signals with various kinds of structures and content.

Recently, many deep learning based methods have been

proposed for image processing problems, e.g. image interpola-

tion [3], image denoising [4], [5], and image super-resolution

[6], [7]. These works have demonstrated the potential of deep

learning technology and generated impressive results. In [3],

Yang et al. utilized a variational learning network to effectively

exploit the structural similarities among images for image

interpolation. The deep learning based denoising method [4]

utilizes a deep convolutional neural network (CNN) for image

denoising by inferring a noise map from the noisy image.

Dong et al. proposed a super-resolution method called SRCNN

[6], which is the first to use CNN for the image super-

resolution problem and has obtained significant performance

gain over traditional super-resolution methods. In [7], a deeper

CNN network is built to achieve a larger receptive field and

further improve the super-resolution performance. The residual

learning technology is used to facilitate training.

Inspired by the great success brought by the deep learning

based methods in image processing problems, some methods

explore to introduce deep learning technique into the frac-

tional interpolation problem [8], [9], [10]. Yan et al. [8] first

proposed a CNN-based interpolation method for the half-pixel

interpolation of HEVC. Following that work, Zhang et al. [9]

used the network architecture of a successful network VDSR

[7] in image super-resolution problem to improve the half-

pixel interpolation performance in HEVC. These two works

only consider the half-pixel interpolation while the quarter-

pixel interpolation is not considered. Consequently, a group

variational transformation neural network (GVTCNN) was

proposed in [10] to improve both the half-pixel and quarter-

pixel interpolation performance of HEVC.

Although GVTCNN obtains gain over HEVC and other two

deep based methods, it still formulates fractional interpolation

as a traditional interpolation problem. In GVTCNN, all the

sub-pixels are interpolated by inferring their variations to

the top-left integer pixels. However, for some sub-pixels, the

motion shift will be smaller if infer them with the integer

pixels of other positions. So it is intuitive that the interpolation

performance of the sub-pixels will be better if we switch to

nearer integer pixels for inference. In this paper, we propose

a switch mode based deep fractional interpolation method to

infer sub-pixels from integer pixels of various positions. And
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Fig. 1. Positions of different fractional pixels. Blue, green and pink blocks
indicate respectively the integer- (Ai,j), half- (h1i,j, h

2
i,j, . . . , h

3
i,j) and quarter-

(q1
i,j
, q2

i,j
, . . . , q12

i,j
) pixel positions for luma interpolation.

a coding unit (CU) level rate distortion optimization (RDO)

is further designed to choose the best fractional interpolation

mode at the encoder side.

The rest of the paper is organized as follows. Sec. II

introduces the proposed switch mode based deep fractional

interpolation method. Experimental results are shown in Sec.

III and concluding remarks are given in Sec. IV.

II. SWITCH MODE BASED DEEP FRACTIONAL INTERPOLATION

A. Switch Mode based Fractional Interpolation

During the motion compensation in HEVC, blocks from

previous coded frames will be used as reference blocks. And

fractional interpolation technique generates sub-pixel position

samples from the reference blocks to achieve better refer-

ence blocks. Fig. 1 illustrates positions of integer pixels and

sub-pixels. To be more specific, positions indicated by Ai,j

represent integer samples; hki,j(k ∈ {1, 2, 3}) and qki,j(k ∈
{1, 2, · · · , 12}) denote half-pixel positions and quarter-pixel

positions, respectively. Given a reference block IA, whose

pixels are regarded as integer samples (Ai,j), the half-pixel

blocks Ih
k

and quarter-pixel blocks Iq
k

are interpolated from

IA. With these sub-pixels interpolated, the most similar ref-

erence sample is finally selected among integer and sub-pixel

position samples to facilitate coding the current block.

In previous work [10], variations between the sub-pixels and

the top-left integer pixels are learned to interpolate the sub-

pixels, which is the mode 1 as shown in Fig. 2. Specifically,

the half-pixel position and quarter-pixel position pixels are

formulated as:

Ih
k
i,j = IAi,j +ΔIh

k
i,j , k ∈ {1, 2, 3} , (1)

Iq
k
i,j = IAi,j +ΔIq

k
i,j , k ∈ {1, 2, · · ·, 12} , (2)

where ΔIh
k
i,j and ΔIq

k
i,j represent the variations, which are

to be learned with CNN from the integer pixels. However,

variations of the sub-pixels of different sub-pixel positions
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Integer-Position
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Fig. 2. Illustration of the designed fractional interpolation modes.

differ a lot due to their different distances to the integer pixels.

For example, the variation between Iq
12
i,j and IAi,j is far larger

than the variation between Iq
1
i,j and IAi,j . Alternatively, the

variation between Iq
12
i,j and IAi+1,j+1 is usually smaller.

We assume that smaller variations are easier to be learned

by the network. So it is significant to introduce integer pixels

of more positions to fractional interpolation, by which smaller

variations can be found for many sub-pixels. To this end,

apart from the existing interpolation mode which infers the

variations all from the top-left integer pixels, we further design

an interpolation mode that chooses another set of integer

pixels for interpolation, which is shown as the mode 2 in Fig.

2. With the designed interpolation modes, the encoder can

switch between them to achieve better fractional interpolation

performance.

B. Architecture of the Variation Learning Network

To accomplish the designed switch mode based fractional

interpolation, a variation learning network is built to infer the

variations from the integer position sample IA. The interpo-

lated sub-pixel samples are derived by adding the variations

to the corresponding integer position samples according to

the interpolation mode. In this subsection, we will introduce

details of the variation learning network.

In the network, we use the parametric rectified linear

units (PReLU) [11] for nonlinearity between the convolutional

layers. Specifically, we define fout
k to be the output of the k-th

convolutional layer. fout
k is obtained by:

fout
k = Pk

(
Wk ∗ fout

k−1 +Bk

)
, (3)

where fout
k−1 is the output of the previous layer, Wk is the

convolutional filter kernel of the k-th layer and Bk is the bias

of the k-th layer. fout
0 is the input integer-position sample.

The function Pk (·) is the PReLU function of the k-th layer:

Pk (x) =

{
x, x > 0,

ak ∗ x, x ≤ 0.
(4)

x is the input signal and ak is the parameter to be learned for

the k-th layer. ak is initially set to 0.25 and all channels of

the k-th layer share the same parameter ak.
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Fig. 3. Framework of the proposed variation learning network. The network first extracts the shared feature map from the integer-position sample. Then
the variations that identify the differences between different sub-pixel position samples and integer-position samples are inferred separately from the shared
feature map by group convolution. Sub-pixel position samples can be later derived by adding the inferred variations to corresponding integer-position samples.

Fig. 3 shows the architecture of our network. A feature map

with 48 channels is firstly generated by convolution from the

integer-position sample. And the subsequent are 8 convolution

layers with 10 channels which are lightweight and cost less

to save the learnt parameters. The 10-th layer later derives

a 48 channel feature map. The residual learning technique is

utilized here for accelerating the convergency of the network.

We add the output of the 1-st layer to the output of the 10-th

layer and then activate the sum with PReLU function to derive

a 48 channel shared feature map. Later, the shared feature map

is copied by concatenation and two group convolution layers

are used to infer the variations of different sub-pixel position

samples separately from the copied shared feature maps.

With the learned variations, the final interpolated sub-pixel

position samples are obtained by adding the variations to the

corresponding integer-position samples.

C. Training Details

For fractional interpolation, there exists no ground truth

because the sub-pixel position samples in fact do not exist.

Consequently, referring to the previous methods, simulated

integer position samples and sub-pixel positions samples are

sampled from images to form the training pairs. In this paper,

we use 400 images in BSDS500 [12] at size 481 × 321 and

321 × 481 to generate the training data. Moreover, due to

different sub-pixel levels of half-pixel samples and quarter-

pixel samples, training data generation of half-pixel and

quarter-pixel position samples is implemented separately with

different settings.

Specifically, for half pixel interpolation, 3 × 3 Gaussian

kernels with random standard deviations in the range [0.4, 0.5]
are used for blurring to alleviate the artifacts brought by the

subsequent sampling process. By dividing the images into

2×2 patches without overlapping, pixels at the top-left of the

patches in the raw images are sampled to obtain the integer-

position sample. And pixels at other three positions of the

patches are separately sampled from the blurred image to

derive the sub-pixel position samples.

As for quarter pixel interpolation, the inferred samples are at

a smaller sub-pixel level. 3× 3 Gaussian kernels with random

standard deviations in the range [0.5, 0.6] are utilized. The

sampling is performed based on 4 × 4 patches, where 12
samples are extracted from pixels at 1/4 or 3/4 positions

vertically or horizontally in the patch.

For the first interpolation mode, the sampled integer position

sample is directly used as the input. For the second mode,

three shifted integer position samples are additionally derived

to provide integer pixels of other positions.

We choose mean square error as the loss function for

training. Let F (·) represent the learned network and Θ denote

the set of all the learnt parameters. The loss function can be

formulated as follows:

L (Θ) =
1

n

n∑
i=1

‖F (xi,Θ) + ϕ (xi, t)− yi‖2, (5)

where pairs {xi, yi}ni=1 are the generated ground-truth pairs of

integer-position and sub-pixel position samples and n is the to-

tal number of the pairs. ϕ (xi, t) represents the corresponding

integer-position sample according to the interpolation mode t.

D. Integration into HEVC

At the encoder side, we can use the target block which

is to be coded to select the best reference block. Thus a CU

level RDO is implemented here to select the best interpolation

method among the traditional interpolation method of HEVC

and the designed deep fractional interpolation method.

Specifically, two flags are set based on the rate-distortion

costs of different interpolation methods. The first flag is set

to decide whether to use the deep based method for fractional

interpolation, which is set and coded for all CUs of inter mode.

If the first flag is set to choose the deep based method, all the

prediction units (PU) in a CU will switch to the corresponding

deep fractional interpolation mode according to the second

flag.

There are total 4 models trained for interpolating half-pixel

and quarter-pixel position samples under two modes. Encoder



TABLE I
BD-RATE REDUCTION OF THE PROPOSED METHOD COMPARED TO HEVC.

Class Sequence
BD-rate

Y U V

Class B

Kimono -1.0% 2.0% 1.6%

BQTerrace -6.2% -3.0% -3.8%

BasketballDrive -3.7% -0.1% 0.0%

ParkScene -1.2% 0.1% 0.2%

Cactus -3.0% -0.3% -1.0%

Average -3.0% -0.3% -0.6%

Class C

BasketballDrill -3.4% 0.0% 0.1%

BQMall -3.6% -1.2% -1.1%

PartyScene -1.7% -0.6% -1.0%

RaceHorsesC -2.0% -1.0% 0.0%

Average -2.7% -0.7% -0.5%

Class D

BasketballPass -3.7% -1.7% -1.2%

BlowingBubbles -2.1% 0.6% 0.6%

BQSquare -1.2% 1.4% 2.3%

RaceHorses -2.8% -1.3% -0.7%

Average -2.5% -0.3% 0.3%

Class E

FourPeople -2.1% 0.5% 0.1%

Johnny -3.7% -0.1% 1.1%

KristenAndSara -2.6% 0.9% 0.7%

Average -2.8% 0.4% 0.6%

All Sequences Overall -2.8% -0.2% -0.1%

and decoder will automatically choose the corresponding mod-

el according to sub-pixel positions and interpolation modes.

III. EXPERIMENTAL RESULTS

A. Experimental Settings

During the training process, the training images are decom-

posed into 32×32 sub-images with a stride of 16. The network

is trained on the Caffe platform [13]. Adam [14] is chosen as

the optimizer for the standard back-propagation. The learning

rate is initially set to a fixed value 0.0001. The batch size is set

to 128. Models after 100, 000 iterations are used for testing.

The network is trained on Titan X GPU.

The proposed method is tested on HEVC reference software

HM 16.7 under the Low-Delay P (LDP) configuration. In this

paper, only the luma component is interpolated. BD-rate is

used to measure the rate-distortion. The quantization parameter

(QP) values are set to 22, 27, 32 and 37 for testing. We

also compare our method with the single mode based deep

fractional interpolation method GVTCNN [10].

B. Experimental Results and Analysis

Table I shows the BD-rate reduction of our method in class

B, C, D and E under the LDP configuration. Our method

has obtained on average 2.8% BD-rate saving and up to

TABLE II
BD-RATE REDUCTION COMPARISON BETWEEN GVTCNN AND THE

PROPOSED METHOD.

Class GVTCNN Proposed

Class B -3.0% -3.0%
Class C -1.7% -2.7%
Class D -1.5% -2.5%
Class E -1.9% -2.8%

All Sequences -2.1% -2.8%

6.2% BD-rate saving for the test sequence BQTerrace. The

results demonstrate that the performance of inter prediction

is improved with the switch mode based deep fractional

interpolation.

For the purpose of further verification, we additionally com-

pare our method with the latest single mode deep fractional

interpolation method GVTCNN [10], which implements deep

fractional interpolation by interpolating sub-pixels all with

the top-left integer pixels. For fair comparison, we have re-

implemented GVTCNN in HM 16.7. The BD-rate reduction

comparison of the Y component bwtween the two methods is

shown in table II. Our method is superior to GVTCNN in most

classes and obtains 0.7% more BD-rate reduction on average.

TABLE III
RDO RESULTS OF THE TWO DEEP FRACTIONAL INTERPOLATION MODES.

Sequence Mode 1 Ratio Mode 2 Ratio

BasketballPass 14705 73.77% 5229 26.23%

BlowingBubbles 15452 76.47% 4755 23.53%

BQSquare 6147 70.70% 2547 29.30%

RaceHorses 22329 85.93% 3657 14.07%

We have also counted the numbers of the CUs that choose

the proposed switch mode based deep fractional interpolation

method with the sequences in class D. We code the frames of

the first 2 seconds of the sequences with QPs 22, 27, 32 and

37. The numbers of the CUs that choose the two interpolation

modes are shown in Table III. The choosing ratio of the two

interpolation modes is also calculated. It can be seen that a

decent amount of CUs choose the mode 2 for deep fractional

interpolation.

IV. CONCLUSION

In this paper, we propose a switch mode based deep

fractional interpolation method for the motion compensation of

video coding. Apart from uniformly inferring the variations to

the top-left integer pixel for interpolating sub-pixels, integer

pixels of other positions are also introduced in our work to

make the variations that are to be learned smaller, which can

benefit the fractional interpolation and further improve the

motion compensation performance. A CU level RDO is used to

help the CU switch between different interpolation methods at

the encoder side. Experimental results show that our method

has obtained on average a 2.8% BD-rate saving on the test

sequences compared with HEVC.
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